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Abstract. A Three-Dimensional Precipitation Particles Imager (3D-PPI) is presented as a new instrument for measuring the 

size, fall velocity, and three-dimensional shape of the precipitation particles. The 3D-PPI consists of three high-resolution 

cameras with telecentric lenses and one high-speed camera with one non-telecentric lens. The former records the high-10 

resolution images of falling particles from three angles, based on which the three-dimensional shapes of particles can be 

restored by using a 3D reconstruction algorithm, and the observation volume is large enough to obtain the particle size 

distribution (PSD). The latter records the images of the falling precipitation particles with 200 frames per second, based on 

which the falling velocity of particles can be calculated. The field experiment of the 3D-PPI and OTT PARSIVEL disdrometer 

(OTT) was conducted at Tulihe, China, more than 880,000 snowflakes were recorded during a typical snowfall case lasting 15 

for 13 hours, and the results show that the PSD obtained by the 3D-PPI and OTT a good agreement. It shows a potential 

application in atmospheric science, polar research, and other fields. 

 

1 Introduction  

Precipitation microphysics refers to the interactions and processes associated with the scale of individual precipitation 20 

particles. Microphysics and microstructure, i.e. the distribution of particle properties such as size, shape, density, and mass, 

together determine the state and evolution of clouds and precipitation at this scale and are intrinsic to the process of cloud and 

precipitation evolution (Taylor, 1998). The microphysical properties of spherical or ellipsoidal raindrops have been relatively 

well studied. Research on ice-phase precipitation (such as snowflakes) microphysics is complicated by the complex geometry 

of individual snowflakes. Minor variations in the air temperature and humidity can cause significant changes in the shape of 25 

ice crystals, resulting in a wide variety of crystal shapes ranging from simple plates and columns to complex dendrites or 

needles (Bailey and Hallett, 2012). Aggregation combines individual crystals into complex and random shapes of snowflakes. 

Despite the challenges associated with measuring snowflake shapes, the significance of this work is substantial. The accurate 

measurement of snowflake shapes is paramount for advancing our understanding of atmospheric sciences, including the 

formation of ice and mixed-phase clouds, as well as precipitation processes (Morrison et al., 2020). Specifically, accurate 30 

snowflake shapes are critical for triple-frequency radar retrievals, as they directly influence the interpretation of radar echoes 
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and the assessment of snow's microphysical properties (Mason et al., 2019). Besides, precise shape descriptions of snowflakes 

will significantly improve the radar-based quantitative winter precipitation estimation (Notaroš et al., 2016).  

The absence of accurate information on the 3D shape of precipitation particles leads to errors in the parameterization of 

physical processes in cloud precipitation and quantitative precipitation estimation (QPE) using weather radar. The assumption 35 

that true snowflakes are ellipsoidal may lead to inaccurate scattering matrix calculations, and hence incorrect determination of 

snow water equivalent (Tyynelä et al., 2011). The use of the ellipsoid approximation is only valid for smaller particles, and 

shape properties play an increasingly important role in scattering calculations as the snowflake scale increases (Olson et al., 

2016). Between isovolumetric spheres and hexagonal columns, more accurate snowflake models are needed. In addition, an 

assessment of the sensitivity of high-frequency falling snow characteristics using an idealized simulated snowflake model 40 

indicates the necessity for a scattering database of snowflakes, in which the highly variable shapes should be taken into 

consideration (Kneifel et al., 2010).  Ideal ice crystal models were created in the form of dendritic, thin plate, stellar plate, 

crown prism, and hollow column, and the scattering effects of these geometries were calculated using the Discrete Dipole 

Approximation (DDA) approach (Kim, 2006). The results indicate that the scattering characteristics of these ideal snowflakes 

are highly sensitive to their shapes. This further emphasizes the necessity for accurate shape modeling (Kim et al., 2007). 45 

Different in-situ instruments were invented to measure the precipitation particles. The OTT PARSIVEL disdrometer 

(Loffler-Mang and Joss, 2000) can obtain the horizontal size (fall velocity) of particles according to the decrease (duration) of 

laser signal by attenuation. However, the one-dimensional measurement concept requires additional assumptions to correctly 

size irregularly shaped particles such as snowflakes (Battaglia et al., 2010), the shape of particles cannot be obtained. The 

Two-Dimensional Video Disdrometer (2DVD) can obtain the three-dimension particle shape by using two line-scan cameras 50 

with an angle of 90°, the sampling area is 10×10 cm2 (Bernauer et al., 2016). It should be noted that particle shape estimates 

may still be subject to bias due to horizontal winds (Helms et al., 2022). The Multi-angle Snowflake Imager (MSI) can obtain 

the three-dimensional shape and fall velocity of individual snowflakes by using four line-scan cameras with an angle of 45°, a 

limitation lies in its restricted sampling area, allowing the measurement of only one snowflake within a narrow field of view 

(Minda et al., 2017).  55 

In addition to line-scan cameras, several planar camera instruments have been developed. The Snowfall Video Imager 

(SVI) employs a camera and a light source to record images of snowflakes in free fall, and its subsequent evolution, the 

Precipitation Imaging Package (PIP), employs advanced digital image processing algorithms to enhance the precision and 

resolution of snowflake imaging (Newman et al., 2009; Pettersen et al., 2020a). The Precipitation Imaging Package (PIP) 

provides physically consistent estimates of snowfall intensity and volume equivalent densities from high-speed images, 60 

although its equivalent density parameterization requires further refinement for extremely high snow-to-liquid ratio snowfall 

events (Pettersen et al., 2020b). The video precipitation sensor (VPS) can obtain the shape and fall velocity of hydrometeors 

when the particles fall through the sampling volume, the camera is exposed twice in a single frame, which allows the double 

exposure of particle images to be recorded, and the size and fall velocity of particles can obtained simultaneously (Liu et al., 

2014; Liu et al., 2019). The Video In-situ Snowfall Sensor (VISSS) consists of two cameras with LED backlights and 65 
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telecentric lenses, it can measure the shape and size of snowflakes in a large observation volume with high pixel resolution 

(43 to 59 µm∙px−1) (Maahn et al., 2024). Nevertheless, it is challenging to resolve highly fine structures of snowflakes with 

only two angles of observation. 

The Multi-Angle Snowflake Camera (MASC) simultaneously captures three high-resolution (30 µm∙px−1) images of 

falling hydrometeors from three different viewpoints (Garrett et al., 2012), which provides the conceptual possibility of 3D 70 

reconstruction of the observed snowflakes. The Visual Hull (VH) algorithm was used to reconstruct the 3D shape of snowflakes 

through multi-angle imaging, and the addition of two more cameras to MASC has been shown to improve reconstruction 

results (Kleinkort et al., 2017). Nevertheless, only 102–104 particles were observed during a typical snowfall event (Gergely 

and Garrett, 2016), which is insufficient to permit the reliable estimation of the particle size distribution (PSD) (Gergely and 

Garrett, 2016). 75 

Currently, instruments are needed that not only provide a finer 3D structure of the snowflake but also capture enough 

particles per unit time to estimate the PSD. This study presents a new instrument: Three-Dimensional Precipitation Particle 

Imager (3D-PPI), the instrument design and main components are introduced in Sec.2, the calibration of the camera and image 

binarization are described in Sec.3, and detailed algorithms including image processing, particle matching, particle 

localization, and 3D reconstruction are presented in Sec.4, the preliminary results of field experiment are discussed in Sec.5, 80 

The last part summarizes the main results and future work of 3D-PPI. 

2 Instrument design 

The 3D-PPI contains three high-resolution cameras with telecentric lenses (numbered Cam0, Cam1 and Cam2 in this 

paper) and one high-speed camera with a non-telecentric lens (numbered Cam3), four high-brightness LED arrays are used as 

light sources to illuminate the observation volume, and a ZYNQ driver circuit is developed to control the cameras, and light 85 

source, transmit the raw images to the PC terminal. To improve the instrument's working efficiency, a capacitive rain sensor 

is adopted as a trigger, the cameras only work when the precipitation occurs. The concept drawing, prototype and snowflake 

images of 3D-PPI are shown in Fig. 1.  

 

 90 
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Figure 1. (a) Concept drawing of the 3D-PPI. (b) The prototype 3D-PPI deployed at Tulihe, China., (photo by J. Y. Shi). (c) Randomly 
selected snowflakes were observed on 6 April 2024 between 0453 UTC and 11:13 UTC. 

The high-resolution camera is a Sony IMX304 with a resolution of 4096 × 3000 and a frame rate of 5 fps. The high-speed 

camera is a Sony IMX287 with a resolution of 720 × 540 and a frame rate of 200 fps. The detailed technical parameters are 95 

shown in Table 1. 
Table 1: Technical specifications of the cameras.  

 High-resolution camera High-speed camera 

Type CMOS, Global shutter CMOS, Global shutter 
Model Sony IMX304 Sony IMX287 

Pixel resolution [μm px-1] 3.45 ×3.45 6.9 ×6.9  
Frame size used [px]  4096×3000 720×540 

Frame rate [Hz] 5  200  

Effective exposure time [μs] 20 20 

The high-speed camera is positioned horizontally at the center, while the three high-resolution cameras are oriented at a 

45° angle relative to the optical axis of the high-speed camera. The high-brightness LED array light sources are situated on the 

same side as the cameras, with the overlapping region of the LED lighting beams serving as the observation volume. The 100 

observation volume is an irregular region intersected by three rectangular light columns all with a cross-sectional area size of 

17cm × 12.5cm and an observation volume size of 1505.327cm3. When particles are present in this observation volume, the 

light reflected and scattered by the particles passes through the lenses, creating a projected image on the cameras, as illustrated 

in Fig. 2. 
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 105 
Figure 2. Optical structure of 3D-PPI 

For the telecentric lens, the magnification is 0.083, the aperture is F6.5, single pixel size is 0.042mm for the high-

resolution camera. This configuration yields a field of view measuring 170mm×125mm, a depth of field of 104.3mm, and an 

optical distortion of 0.044%. For the non-telecentric lens, the focal length is 12mm, the aperture ranges from F2.4 to F16, and 

the magnification is 0.026 at a working distance of 450mm. A single pixel size is 0.265mm for a high-speed camera, and the 110 

field of view is 191mm×143mm. The optical distortion is 0.16% at minimal. 

The utilization of telecentric lenses eliminates the sizing error caused by the uncertain distance between the snowflakes 

and the cameras.  Unlike non-telecentric lenses, telecentric lenses are based on the principle of parallel light imaging, resulting 

in identical objects at different distances from the lens having the same size in the image (Fig. 3a, c), which leads to a difference 

in the method of performing 3D reconstruction later in Sec. 4 (Fig. 3b, d). With an optical distortion of 0.044%, the telecentric 115 

lens effectively minimizes distortion, establishing a linear correspondence between image coordinates and world coordinates. 

This alignment greatly simplifies camera calibration, it will be elaborated upon in Sec. 3. 

 
Figure 3. Illustration of imaging characteristics and reconstruction of a snowflake using three cameras. (a) non-telecentric lens imaging 

characteristics; (b) non-telecentric lenses back-projected to obtain three visual cones (Kleinkort et al., 2017); (c) telecentric lens imaging 120 
characteristics; (d) telecentric lenses back-projection to three visual columns. 
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3D-PPI has 4 light source arrays, each consisting of 6 high brightness LEDs organized into a cluster to create an array 

lighting system. Each LED is 5W with a total power of 120W. This LED lighting system integrates a high-brightness LED 

chip, substrate, heat sink, casing, leads, protective features, and other functionalities into a single unit. At its core lies the LED 

chip, utilizing white high-brightness LED chips. Each LED is equipped with a converging lens, facilitating the creation of a 125 

cone-shaped beam of light. The design and physical representation of the LED array lighting system is illustrated in Fig. 4. 

The LED light sources are arranged in a parallel configuration, leading to a unidirectional power supply interface. The LED 

operates in either constant current mode or trigger mode, with the former ensuring a consistent light output, thereby enhancing 

the uniformity of illumination within the observation volume. 

 130 
Figure 4. (a) LED array lighting group design; (b) Physical picture; (c) Cone-shaped beam formed by LED array lighting group. 

3 Calibration  

3.1 Calibration of cameras 

Camera calibration is the basis for obtaining three-dimensional spatial information from two-dimensional images. There 

is a one-to-one correspondence between the spatial scene points and their image points in the image, and their positional 135 

relationship is determined by the camera imaging geometric model (Cheng and Huang, 2023). The parameters of this geometric 

model are called camera parameters, which can be determined by experiment and computation, and the process of solving the 

parameters experimentally and computationally is called camera calibration. The purpose of camera calibration in this section 

is to estimate the projection matrix KMi of the transformation relationship between the 3D spatial points and each pixel plane 

pixel point in the world coordinate system. The geometric model for telecentric lens imaging is described in detail in Appendix 140 

A. 

Since the chessboard grid (Fig. 5b) has an ideal regularity and is easy to be recognized, it is used here as a calibration plate 

for camera calibration, and the apparent 3D coordinate point to the image pixel coordinate point is a linear change without 

considering the camera/lens distortion. The equation obtained by deriving the telecentric lens imaging model is as follows:  
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where β is the telecentric camera magnification; Su and Sv are the length and width dimensions of the individual image; rij 

and tx (ty) denote the matrix elements of the rotation and translation process from the world coordinate system (WCS) to the 

camera coordinate system (CCS) respectively, and these parameters relate solely to the relative position of the cameras; and 

u0 and v0 are the horizontal and vertical coordinates of the camera's main point offsets, which may change over time. 

 The coordinate points (Xw, Yw, Zw) in WCS are projected to the coordinate points (u,v) in the pixel coordinate system (PCS) 150 

through the 2 × 4 matrix (also denoted as KM) on the left side of Eq. (1). In particular, the three telecentric lenses are in the 

same WCS, and each lens corresponds to a projection parameter KMi (i=1,2,3).  

To obtain the projection parameters, the following steps are executed: Firstly, establish the position of the world coordinate 

system by capturing images of a 3D checkerboard grid from the same localization using three cameras. Secondly, measure the 

precise coordinates of all checkerboard corners in the world coordinate system (Xwj, Ywj, Zwj) (j denotes the number of corner 155 

points), and identify the pixel coordinates (uij, vij) of these corners in the ith images. Thirdly, formulate super-determined linear 

equations, such as Eq. (2), and estimate the projection matrix for each camera optimally using the least squares method. 

     (2) 

Where i=1,2,3, and j has a maximum value of 264, the value is determined based on the number of corner points captured 

by each camera. 160 

It is important to note that the three-dimensional checkerboard plays an irreplaceable role in this calibration procedure, it 

cannot be replaced by a normal two-dimensional checkerboard. The projection matrix cannot be obtained by using only a 2D 

checkerboard for the following reasons. In the world coordinate system established by a single two-dimensional checkerboard, 

the super-deterministic linear Eq. (2) is established in the same way as in the previous method, but then the values of all three-

dimensional world coordinate points are the same so that the matrix . The third and fourth-row 165 

values are the same, then linear correlation, in the process of solving by least squares to calculate the pseudo-inverse matrix of 

A. If the third and fourth rows of A are linearly correlated, the determinant of A is 0, that is, it is a singular matrix, which is 

impossible to inverse, leading to errors in the process of solving by least squares, and therefore the planar two-dimensional 

checkerboard grid cannot be realized to solve the calibration.  

The two mutually perpendicular three-dimensional checkerboard planes of the three-dimensional checkerboard grid 170 

define a common world coordinate system (WCS) (Fig. 5b). The calibration results show that the average reprojection error 

for 3D-PPI is 0.32 pixels.  
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Figure 5. (a) 3D checkerboard calibration principle; (b) World coordinate system with three camera views.  

  175 

3.2 Calibration of image binarization 

Calibration is required to convert Dmax and Deq from pixels to micrometers (Dmax is the distance between the two largest 

points of the particle profile, and Deq is the diameter of the circle equal to the area of the particle profile). The calibration 

process utilizes reference ceramic spheres with absolute sphericity ranging from 1 to 25 millimeters in diameter, which are 

dropped into the observation volume of 3D-PPI (Fig. 6a). The materials of spheres have a similar refractive index to the 180 

snowflakes. The image of each diameter sphere is optimally binarized manually so that the image contour is as circular as 

possible, at which point Dmax and Deq are almost equal. The scatterplot about the actual diameter of the spheres and the diameter 

of the image contour circle and the linear least-squares fit straight line plotted together (Fig. 6b), resulting in  

 max max[p ] (24.0509 0.0003) [μm] 0.5473D x D     (3) 

for Cam0 (Fig. 6a), and 185 

 max max[p ] (24.3838 0.0006) [μm] 3.8484D x D     (4) 

for Cam1,  

 max max[p ] (24.3710 0.0005) [μm] 1.9839D x D     (5) 

for Cam2.  
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 190 

Figure 6. (a) The reference ceramic spheres with absolute sphericity ranging from 1 to 25 millimeters in diameter and the binarized 

images of each sphere; (b) Calibration of Dmax, using ceramic spheres from 1 to 25mm in diameter for three high-resolution cameras 

(Cam0, Cam1, Cam2). The results of the linear least squares fit are also shown in the legends.  

The reciprocals of the slopes of the three fitted lines are 41.5785, 41.0108, 41.0324 µm∙px−1, and closely align with the 195 

41.5663 µm∙px−1 specification from the manufacturer of the high-resolution cameras. The estimated random errors from the 

normalized root square errors, derived from the observed and true size difference, were 1.8% (Cam0), 2.6% (Cam1), and 1.5% 

(Cam2) respectively, indicating that random error is negligible.  
 

4 Algorithms 200 

4.1 Image processing 

For High-resolution camera images with the resolution of 4096×3000, no background removal and denoising are required 

due to low image noise and little background interference. The processing steps are as follows: (ⅰ) Image binarization. The 

image is binarized through adaptive thresholding. The sensitivity coefficients are determined by processing the ceramic sphere 

images of Section 3.2 to obtain the roundest contour, i.e., the difference between Dmax and Deq is minimized. (ⅱ) Particles 205 

detection. Detecting connected regions in binarized images with an area greater than 20 pixels (Equivalent to 0.035 mm2) 

enables the removal of small noises from the image. Snowflakes that are too small in diameter are ignored, otherwise some 

noise in the image will be incorrectly recognized as snowflakes. Combining into a single particle, when the centers of the 

(a) 

(b) 
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connected regions are detected to be less than 4 mm apart, is necessary is an essential step. This eliminates the problem of 

separating the same particle into two regions in images due to the image processing method. 210 

For the high-speed camera images with a resolution of 720×540, there is non-negligible noise and background interference, 

therefore, two more steps are required before image binarization and particle detection: (ⅰ) Background removal and 

enhancement. Background artifacts captured by high-speed cameras in natural settings can be influenced by varying lighting 

conditions, lens surface contamination, or other factors that change over time. To address this issue, a real-time background 

detection method is employed. Specifically, 1024 images are randomly selected every minute to calculate the average grayscale 215 

value, representing the minute-by-minute background changes. These background variations are then subtracted from all 

images taken within that minute to effectively remove the background interference. It is further necessary to enhance the 

contrast of the image by stretching the grey scale histogram to better distinguish between background and foreground particles. 

(ⅱ) Image denoising. The median filtering is used to remove the remaining. Further, the image binarization and particle 

detection methods are the same as the previous high-resolution camera image processing methods. 220 

The two types of image processing processes and the results of each step are shown in Fig. 7. 

 
Figure 7 Flowchart of two types of image processing. 

To evaluate the effectiveness of the above image processing algorithm, ceramic spheres of different diameters in section 

3.2 were dropped into the observation volume, and each sphere was dropped 20 times. The measured values of Dmax and Deq 225 

are shown in Fig. 8. Overall, the measured values of Dmax and Deq agree well with the actual diameter of the ceramic spheres. 

The average absolute error of Dmax measurements for all diameters of small spheres is -0.048mm, smaller spheres 

measurements tend to be higher than true values, larger spheres measurements tend to be lower than true values, and the 

average relative error is +2.2%. The average absolute error of Deq measurements for all diameters of small spheres is -0.33mm, 

with all diameter measurements underestimating the true values by an average relative error of -2.7%. The average Dmax tends 230 

to be higher, and the average Deq tends to be lower, the sizing errors increase with the diameters of the spheres.  Since the 
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measurement errors of Deq for all spherical diameters are lower than the true values, they can be utilized for systematic error 

correction. The higher error of the larger spheres might be caused by the uneven illumination of the larger sphere and its 

specular reflection.  

 235 
Figure 8 Measured values of Dmax (a) and Deq (b) for ceramic spheres of different diameters. 

4.2 Particle matching and localization 

In the observation volume of 3D-PPI, there might be numbers of particles with similar sizes, colors, shapes, and textures, 

which poses a challenge for particle identification from the images captured by three cameras. In this work, we propose a 

particle matching algorithm that addresses this issue by focusing on the spatial positions of particles in three images, as derived 240 

from the projection matrices obtained through precise calibration of the trinocular telecentric camera system. The 

implementation of the algorithm is detailed as follows (Fig. 9): 

(ⅰ) Identify the center coordinates of each particle (Pi, i represents the number of recognized particles) in the image from 

Cam0 (Fig. 10a).  

(ⅱ) Using the projection matrix KM1 of Cam0, i underdetermined linear equations corresponding to Pi are solved to obtain 245 

ith straight lines Li in 3D space. Li represents all points in three-dimensional space that can be projected onto Pi by KM1, in 

other words, the lines Li is the back-projection of the points Pi in the 3D space. 

(ⅲ) Li lines are projected onto the planes of Cam1 and Cam2 by multiplying the projection matrices KM1 and KM2, 

resulting in ith line segments (Fig. 10b, c). 

(ⅳ) Identify the particles that ith line segments pass through, corresponding to several particles, as illustrated in Fig.10. 250 

Only if three particles can be observed on the three line segments, and each line segment intersects each of the three particles 

in sequence, an effective matching was achieved. 

(a) (b) 
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Figure 9. Flowchart of particles matching 

 255 

 
Figure 10. The three particles identified in Cam0 can only appear on the corresponding three lines in Cam1 and Cam2 respectively 

After completing camera calibration and particle matching, 3D reconstruction for each particle needs to be performed. 

The traditional process of 3D reconstruction involves dividing the entire observation volume into sufficiently fine voxel grids. 

However, since each particle only occupies a small space of the observation volume, traditional methods are often 260 

computationally inefficient, resulting in excessive computational resource consumption or poor reconstruction accuracy. 

Therefore, in consideration of these issues, we propose a method that involves preliminarily locating particles in 3D space 

before proceeding with subsequent 3D reconstruction, leveraging the positions of single particles in three images to identify 

the minimal cuboid capable of containing the particles, thereby accurately pinpointing the particles' localizations and avoiding 

unnecessary voxel grid searches to enhance computational efficiency. 265 

For particles with regular geometries, back-projection of the contour centers suffices to determine the center of the 3D 

reconstructed object. Subsequently, the pixel size of the particle in the image can be converted to the actual size, which is then 

used as the length of the side of the cuboid to define the reconstruction intervals. However, precipitation particles, particularly 

solid ones, often exhibit highly irregular shapes. The center of the three-dimensional body projected onto the contour may not 

coincide with the center of the two-dimensional contour, rendering the straightforward intersection of back-projected lines 270 

inapplicable and complicating the reconstruction process.  

For a single particle with irregular geometry, the pixel coordinates of the center point of the particle in Cam0, Cam1, and 

Cam2, respectively, have been identified and the subsequent 3D spatial localization steps are as follows:   

(ⅰ) Find the back-projection line L1 of point P1 by KM1. The underdetermined linear equation corresponding to P1 is solved 

to obtain a straight line L1 in 3D space. This implementation principle is similar to the second step of particle matching 275 

mentioned above.  

Cam0 Cam1 Cam2 (a) (b) (c) 
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(ⅱ) The lines L1 are projected onto the planes of Cam1 by multiplying the projection matrices KM2, resulting in line 

segment L2, which is represented as a 2-row by 1-column matrix.  

(ⅲ) Find the point P2' on L2 that is closest to P2. Due to the irregular shape of the particle, P2' does not necessarily coincide 

with P2. 280 

(ⅳ) Following the same approach as in step 1, determine all lines L3 that can be projected onto the points of P2' in Cam1 

through the projection matrix 2.  

(ⅴ) Locate the 3D coordinates of the intersection of L1 and L3, P, which is the center of the target cuboid, and further 

determine the side lengths of the cuboid.  From the previous steps, L1 and L3 are destined to intersect in 3D space, and the 

intersection point is regarded as the center of the rectangle, whose side lengths can be determined by converting from the pixel 285 

dimensions in the particle image to the actual physical dimensions in space.  

(ⅵ) Finally, verify that the projection of the P point through KM3 in Cam2 is near the P3 point and within the particle 

contour, otherwise, it is a failed localization. 

The particle's position in space should be inside the region of the cuboid determined by localization, which will next be 

discretized into numerous smaller voxel grids to perform 3D reconstruction. This approach effectively overcomes the 290 

limitations associated with irregular geometries, providing a robust solution for accurate 3D reconstruction in the presence of 

complex particle shapes. 

 

Figure 11. Steps to locate the 3D spatial position according to the image particle contours 

4.3 Three-dimension (3D) reconstruction 295 
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The Visual Hull (VH) method is used to reconstruct the 3D shape of snowflakes. This approach utilizes silhouettes that 

have been serially calibrated using multiple viewpoints around the target, thereby enabling the reconstruction of its three-

dimensional shape.  A cone of silhouette is created by back-projecting the set of points of view of the previously detected 

silhouettes into the corresponding image planes in front of the cameras (Fig. 3b), and the intersection of these cones gives the 

visual hull  (Hauswiesner et al., 2013). Since concave features do not affect the silhouette obtained from each image, a 300 

limitation of the visual hull method is its inability to capture concave features.  Based on high-resolution contour images 

captured by three cameras equipped with telecentric lenses at three angles of 3D-PPI, we propose to apply the visual hull 

method to reconstruct the 3D shapes of snowflakes. The use of telecentric cameras allows the visual solid cones formed by 

back-projection to become visual solid columns (Fig. 3b, d). 

The algorithm operates as follows: given a multi-viewpoint contour map and projection matrices, it ascertains whether 305 

the pixel or voxel corresponding to a spatial point on each contour map is part of the object's contour. The resulting model 

represents a sample of the smallest convex set that encloses the object's true shape, precluding the depiction of indentations. 

 
Figure 12. Flowchart of 3D construction algorithm 

Initially, we employ the preliminary particle localization method described in Sec. 4 to estimate the particle's approximate 310 

spatial position. The further procedure for obtaining a 3D point cloud and reconstructing the 3D model of precipitation particles 

is outlined through the following refined steps (Fig. 12): (ⅰ) Voxel Grid Discretization: Subdivide the space into a voxel grid 

with a predefined resolution. For each voxel, extract the 3D coordinates of the upper left corner point. This grid will serve as 

a framework for subsequent steps. (ⅱ) Projection onto 2D Pixel Coordinates: Utilize the projection matrix to project the 3D 

voxel coordinates of each voxel onto the three-angle contour, transforming them into 2D-pixel point coordinates. (ⅲ) Obtaining 315 

back-projected visual columns (by three sets of point clouds): Mark the 3D voxel coordinates of points that can be projected 

onto the contours of each of the three images, that is, obtain three contours of back-projected visual columns. (ⅳ) Preserve the 

point cloud of the intersecting region: Retain a point cloud within the convergence region of the three optical axes, identifying 

the spatial locus where the 3D reconstructed object is situated. (ⅴ) 3D Point Cloud Envelope and Rendering: Apply the 
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triangular sectioning algorithm to extract the visual envelope of the 3D point cloud. Subsequent rendering steps will then be 320 

used to construct the 3D reconstruction model of the precipitation particle.  

5 Preliminary results of field experiment 

5.1 Case studies of snowfall case 

To evaluate the performance of the 3D-PPI, the prototype of 3D-PPI was deployed at Tulihe, China (50.692°N, 121.652°E; 

733ma.m.s.l.) from January 1st, 2024, and an OTT PARSIVEL laser disdrometer (OTT for short) was installed 10 meters apart 325 

for comparison. A typical snowfall case lasting for 13 hours, from 1900 UTC on March 28th, 2024 to 0759 UTC on March 

29th, 2024 was observed and analyzed.  

The PSD calculated from OTT counts is as follows (Zhang et al., 2019): 

 
32
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where PSD (Di) (mm-1∙m-3) is the number concentration of particles per unit volume per unit size interval ΔDi for 330 

snowflake size Di (mm); nij is the number of snowflakes within size bin i and velocity bin j; T (s) is the sampling time (60 s in 

this study), and Vj (m/s) is the falling speed for velocity bin j; S (m²) is the effective sampling area (0.18 m×0.03 m). 

The PSD calculated from 3D-PPI counts is as follows: 
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Where Ni is the number of particles in the ith size bin; Vobservation (m³) is the sampling volume of the Cam0 camera, which 335 

is the product of the observation field of view and depth of field (0.17 m × 0.125 m × 0.1043 m); Nima is the number of particles 

recorded during the sampling time (60 s in this study). The size descriptor D for 3D-PPI is Dmax or Deq in this paper. Considering 

that the sampling rate of a high-resolution camera is 5 fps, and the time for a snowflake to pass through the field of view is 

less than 0.2s, the probability of capturing the same snowflake in two consecutive frames is very low.  

During the snowfall case, three high-resolution cameras of 3D-PPI recorded 552383 and 328792 snowflakes over two 340 

days. The PSD obtained by 3D-PPI (using two types of size descriptors) and OTT are compared (Fig. 13a, b). The PSDs 

measured by OTT and 3D-PPI using Deq as a size descriptor are highly consistent, however, they deviate significantly from 

those using Dmax as a size descriptor. PSDs are described by Dmax as opposed to Deq across a larger range of sizes, and it may 

be more valuable to describe them with Deq. The peaks of Deq were all near 0.4 mm and varied very little over the days. There 

were more and more concentrated small particles on March 28 compared to March 29 (Fig. 13a), and the average particle size 345 

was consistently smaller (Fig. 13e).  

The trends of the number density of particles observed by the two instruments were similar, the correlation coefficients 

are 0.94 and 0.96 for the two days. Comparison of temporal plots, some periods (19:00 to 19:50, 20:50 to 22:00, and after 23:30 

UTC on March 28; 01:30 to 04:30, and 06:00 to 07:59 on March 29) have fewer snowflakes per unit volume, while the average 
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size is larger and the deviation of Deq and Dmax is larger, which may be a period when the snowflakes are sparsely distributed 350 

in space, with a high degree of aggregation of individual snowflakes and a more complex shape. On the contrary, in other 

periods (19:50 to 20:50 and 22:00 to 23:30 UTC on March 28; 00:00 to 01:30, and 04:30 to 06:00 on March 29), the particle 

counts per unit volume were smaller, while the average size and the deviation of Deq and Dmax was larger, which means the 

aggregation of snowflakes was weakened.  

 355 
Figure 13. This typical continuous snowfall was split into two days and plotted separately (left and right). The 1-minute particle size 

distribution (PSD) of the Dmax (blue) and Deq (orange) for 3D-PPI and OTT (yellow) for the snowfall case (first row). Temporal plot of 

average particle counts per unit volume per minute over two days (second row). Temporal plot of average particle size per minute over time 

(third row). 
5.2 Three-dimensional shape of snowflakes 360 

Fig. 14 shows the reconstructed 3D shapes of 6 snowflakes collected on 6 April 2024. For individual snowflakes, three 

images were obtained from three high-resolution cameras (Cam0, Cam1, and Cam2), and the results of the 3D shape were 

reconstructed by utilizing the visual hull method (Fig. 14).   To characterize the 3D shape of each snowflake, four parameters 

are calculated: volume V, maximum size Dmax (diameter of the smallest enclosing circle), aspect ratio AR (ratio of the longest 

and shortest axes of the smallest outer ellipsoid), sphericity (Sp). Sp is derived from the V and S (surface area) and characterizes 365 

the degree to which 3D particles approach the sphere: 

 

2
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The 3D shapes of snowflakes ranging in volume from over 400 mm³ (Fig. 14b) to as small as less than 20 mm³ (Fig. 14f) 

all can be reconstructed. In the algorithm when two connected regions are close together, they are considered as the same 

snowflake, so the reconstructed snowflake will appear as a separated small part that is not connected to the main body, in 370 

which case Dmax is meaningless (Fig. 14 e, f). From the results, it can be found that the visual hull approach can effectively 

and precisely execute the 3D reconstruction for snowflakes with highly realistic, intricate, and varied shapes and compositions, 

as well as diverse sizes and sphericity.  The analysis of individual snowflake cases is meaningless, and here is just to show that 

3D-PPI already has the capability of 3D reconstruction. Therefore, the next step is to embed the 3D reconstruction and pre-

algorithms into the instrument to realize real-time, automated, and batch 3D reconstruction of snowflakes, to statistically 375 

characterize the distribution of the 3D shape of a large number of snowflakes. 

 
Figure 14. Several typical snowflakes captured by 3D-PPI in the field and the corresponding 3D reconstruction results. For each 

reconstruction, the computed V, Dmax, AR, and Sp.  

5.3 Fall velocity of snowflakes 380 

The single exposure time of a high-speed camera is 20 µs so blurring that particle motion is insignificant, and the time 

between two consecutive images is 5ms. The same particle may appear in several consecutive images two or more times, and 

the same particle is merged into a single image in Fig. 15a, the speed calculation schematic is shown in Fig. 15b.  
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Figure 15. Processed high-speed camera images, and then the same particles are merged into a single image (a). Speed Measurement 385 
Schematic (b). 

When there are multiple particles in a high-speed camera image, particle matching is required. The same particle is 

regarded as the same particle when the following three principles are satisfied: (ⅰ) the images in which the particles are located 

are adjacent to each other (the timestamp interval is 5ms); (ⅱ) the pixel coordinates in the particle images are similar (the 

falling velocity of the snowflake is generally not more than 8m/s, so the interval between neighboring snowflakes is not more 390 

than 200 pixels); (ⅲ) the Dmax and Deq of the particles are similar, generally not more than 20%. Each particle may have 

recorded anywhere from 2 to 20 Dmax, Deq, pixel horizontal coordinates, and pixel vertical coordinates. The standard deviation 

of Dmax, Deq, and the difference between the horizontal and vertical coordinates of each particle is calculated, and if the standard 

deviation of any of the particle's quantities is too large, the particle is treated to be an invalid particle, and it will be removed. 

Dmax and Deq of each particle are taken to be the maximum of these values, which excludes cases where the particle is not 395 

captured because it is at the edge of the image. The horizontal velocity (Vh) component and vertical velocity component (Vv) 

are calculated as follows:  

 2 1
h α

Δ
x xV

t


   (9) 
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Where, x2, x1 and y2, y1 denote the horizontal and vertical coordinates of the same particle in neighboring images; Δt  400 

denote exposure interna which is generally 5ms, but when there is a missed frame in the image to the image timestamp 

difference shall prevail; α  denotes the magnification of the high-speed camera at the focal distance, which is 230 µm∙px-1. 

From 0800 UTC to 0830 UTC on 6 April 2024, the Cam3 of 3D-PPI recorded 322,267 valid snowflakes, and the 

snowflake velocity distribution with diameter was calculated. The horizontal velocity component and vertical velocity 

component are further plotted as a scatter density plot and compared to the results measured by OTT at the same period, which 405 

is shown in Fig.16. OTT's D and V binning is uneven, whereas here 3D-PPI is set to even binning with D and V intervals of 

(b) 
(a) 
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0.1mm and 0.1m/s, respectively. The red and black solid lines in Fig. 16b, d represent the empirical curves of the falling 

velocity and diameter of unrimed aggregates and densely rimed dendrites, respectively (Locatelli and Hobbs, 1974).  

The empirical velocity of unrimed aggregates is:  

 0.16
1 0.81V D  (11) 410 

The empirical velocity of densely rimed dendrites is: 

 0.33
2 0.62V D  (12) 

 
Figure 16. Distribution of horizontal (a), and vertical (b) snowflake velocities with Deq measured by 3D-PPI. Distribution of falling velocity 

with diameter measured by OTT (c). 415 
The average value of the horizontal velocity component measured by 3D-PPI is +0.05m/s (positive and negative values 

indicate westward and eastward velocities, respectively), and the standard deviation is 2.56m/s (Fig. 16a). The overall 

distribution of particle horizontal velocities ranges between ±10m/s, and more than 80% of the snowflakes have a horizontal 

velocity distribution between ±1.5m/s. Positive velocities predominate over negative ones, largely influenced by the prevailing 

westward winds. The average value of the vertical velocity component measured by 3D-PPI is 0.88m/s and the standard 420 

deviation is 0.54m/s, while, the average value and standard deviation of the velocities measured by OTT are 0.69m/s and 

0.31m/s. The diameters of snowflakes measured by 3D-PPI (OTT) were concentrated in the range of 0.5 to 1.4 mm (0.4 to 1 

mm). The vertical velocities were concentrated in the 0.3 to 1.2 m/s (0.3 to 0.7 m/s). The diameter and velocity values measured 

by 3D-PPI are larger and more dispersed than those measured by OTT. Overall the vertical velocity of snowflakes increases 

with the increasing diameter, and the observed data are in good agreement with the two empirical velocity relationships 425 

(Locatelli and Hobbs, 1974). It should be noted that there are a certain number of velocity outliers of snowflakes measured by 

the 3D-PPI, in which some large snowflakes have small velocities, and some small snowflakes have large velocities beyond 

empirical values. 

(a) (b) (c) 
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6 Conclusion 

The design of a Three-Dimensional Precipitation Particles Imager (3D-PPI) has been introduced in this paper. The 3D-430 

PPI consists of three high-resolution cameras (4096×3000, 5fps) with telecentric lenses and one high-speed camera (720×540, 

200fps) with a non-telecentric lens. Three high-resolution cameras are oriented at a 45° angle relative to the optical axis of the 

high-speed camera, forming an intersecting observation volume of 1505.327 cm3. The high-resolution cameras feature a 

resolution of 41.5 µm∙px-1 and are precisely synchronized by clock control which is sufficient to obtain fine shapes of 

snowflakes, and the large field of view of 170 mm×125 mm enables it to capture enough snowflakes to estimate PSD more 435 

accurately. The high-speed camera allows for the calculation of velocity more accurately. Besides, the utilization of telecentric 

lenses eliminates the sizing error caused by the uncertain distance between the snowflakes and the cameras.  

For three high-resolution cameras, a calibration method using the 3D chessboard was proposed. By shooting the 3D 

checkerboard grid from three angles at the same time, find the correspondence between the world coordinate points and the 

image coordinate points and then solve the system of equations to estimate the projection matrix of the three angles. A 440 

reprojection averaging error of less than 0.4 pixels can indicate the accuracy of the calibration. Image binarization calibration 

is achieved by photographing ceramic reference spheres with different diameters of absolute sphericity. Both types of image 

processing require binarization and particle detection, and high-speed cameras require background removal, enhancement, and 

denoising before these two steps. The image processing algorithm needs to be evaluated by batch processing of ceramic sphere 

images, and the average values of the relative errors of Dmax and Deq are +2.2% and -2.7%, respectively. The issue of matching 445 

the same particle by its position in the image can be addressed by using the projection matrix obtained from the pre-calibration. 

The preliminary determination of the 3D spatial localization of particles after particle matching can effectively improve the 

computational efficiency of the 3D reconstruction algorithm, so particle localization is an indispensable step before 3D 

reconstruction. The snowflake 3D shape is further reconstructed using a visual hull algorithm based on binarized contour 

images from different angles and projection matrixes (Kleinkort et al., 2017).  450 

The 3D-PPI was installed at Tulihe, China on January 1st, 2024, and the OTT was installed 10 meters apart for comparison. 

The PSDs, 3D shapes, and fall velocity of snowflakes were preliminarily analyzed. The PSD measured solely by Cam1 and 

that obtained by OTT exhibit excellent agreement during the typical snowfall case. Several snowflakes with different 

morphologies were selected and reconstructed in three dimensions, indicating that 3D-PPI is initially capable of reconstructing 

snowflakes. The horizontal and vertical velocities of snowflakes were calculated to obtain the velocity distribution. Further 455 

comparisons were made with the OTT, and overall, the two distributions for fall velocity were similar, however, the diameter 

and velocity values measured by 3D-PPI are larger and more dispersed than those measured by OTT. This difference may be 

attributed to the potential magnification differences of the high-speed camera in the 3D-PPI due to particles being at varying 

distances from the cameras.  

In this paper, The PSD statistics use only one image from a high-resolution camera, and the 3D reconstruction is limited 460 

to just one case study. The next step is to optimize the 3D reconstruction algorithms of snowflakes, and statistically characterize 
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the distribution of the 3D shape of a certain number of snowflakes. Also, the accuracy of velocity measurement still needs to 

be verified and improved. In the future, 3D-PPI will facilitate more precise and realistic estimations of the snowflake 

parameters, including the size, volume, mass, and density. Based on the above details parameters, the 3D-PPI has the potential 

to improve the radar-based estimation for solid precipitation in winter.  465 
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 Appendix A: Coordinate system transformation 

Camera calibration encompasses four key coordinate systems: 

1. World coordinate system (WCS): Denoted as ( wX , wY , wZ ): This is a user-defined 3D spatial coordinate system that is 480 

utilized to describe the location of the target object within the tangible world, with units typically expressed in millimeters. 

2. Camera coordinate system (CCS): Denoted as ( cX , cY , cZ ): This coordinate system is intrinsic to the camera and is utilized 

to describe the object's position relative to the camera's perspective. It acts as an intermediary between the WCS and the image 

(pixel) coordinate system. 

3. Image coordinate system (ICS): Denoted as (x, y), this system is employed to articulate the projection and translation of the 485 

object from the CCS to the ICS during the imaging process. It facilitates the subsequent extraction of coordinates under the 

pixel coordinate system, with the unit being millimeters. 

4. Pixel coordinate system (PCS): Denoted as (u, v), this system describes the coordinates of the object's image point post-

imaging on the digital image sensor. It is the actual coordinate system from which image information is read from the camera, 

measured in units of pixels. 490 

The camera imaging process involves the transformation from WCS to PCS. Camera calibration, in essence, is the 

procedure of determining the transformation relationships between these four coordinate systems. 

A.1 WCS to CCS 
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Firstly, the transformation of a camera shot from the WCS to the CCS is a rigid-body transformation, where the object 

does not deform, but only rotates and translates. Only the rotation matrix R and translation matrix T need to be obtained. The 495 

camera coordinate system is obtained by rotating θ, α, and β angles around the z, y, and x-axes in turn and translating to obtain 

the rotation matrix in the three dimensions: 

                                                                 ( A.1) 

The three matrices are multiplied together to obtain a three-dimensional rotation matrix: 

                      (A.2) 500 

Where, for z, y, and x direction of rotation is followed by the right-hand spiral rule, the thumb points to the direction of 

the axis, and the four-finger direction is the positive direction of rotation. 

For the translation matrix, at this point, the coordinates are already in the same direction as CCS, but with the world 

coordinate system origin coinciding with the coordinates under the coordinates, converting the camera coordinate system also 

needs to be added to the translation is WCS origin in CCS under the coordinates T. 505 

The rotation and translation process can be expressed by the formula: 

                                                          （A.3） 

A.2 CCS to ICS 

The difference between telecentric cameras and traditional pinhole cameras is the difference in projection. A pinhole 

camera uses a perspective projection to transform from CCS to ICS; a telecentric camera uses an orthogonal projection. The 510 

relationship between CCS and ICS is as follows: 

                                （A.4） 
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where β is the magnification of the telecentric lens of the telecentric camera. It is not difficult to see that the image 

coordinates are independent of the camera coordinates Zc, i.e. the distance of the object to be photographed from the lens does 

not affect the imaging (projection) of the image, which is also in line with the characteristics of telecentric lens imaging. 515 

A.3 ICS to PCS 

To convert a point in ICS whose origin is at the center of the light in real physical units to a point in an image 

coordinate system whose origin is at the top left corner of pixels requires two transformations, translation, and scaling, which 

are affine transformations. 

                                                                 （A.5） 520 

where the pixel size is Su× Sv, (u0, v0) is the pixel coordinate of the optical center point. 

A.4 WCS to PCS 

Integration of expressions from the first three sections: 

                                      （A.6） 

Similar to small hole imaging, is the internal parameter of the camera, which only relates to the camera 525 

itself and has nothing to do with the position of the camera.  is an external parameter of the camera, 

representing the position of the camera. It has nothing to do with camera manufacturing or lens distortion, but only with the 

mounting position and angle of the camera in WCS. R and T represent the rotation and translation process from WCS to CCS, 

respectively. Compared to common pinhole lenses, the four quantities r31, r32, r33, and tz in the third row of the external 

reference matrix of the telecentric camera do not exist. This further confirms the special feature of telecentric camera imaging, 530 
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i.e. it is a parallel light projection and the distance of the object from the camera does not affect the size of the object in the 

image. 
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